
Extra-High Speed Matrix Multiplication on the Cray-2

David H. Bailey
September 2, 1987

Ref: SIAM J. on Scienti�c and Statistical Computing, vol. 9, no. 3, (May
1988), pg. 603{607

Abstract

The Cray-2 is capable of performing matrix multiplication at very high rates. Using
library routines provided by Cray Research, Inc., performance rates of 300 to 425 MFLOPS
can be obtained on a single processor, depending on system load. Considerably higher rates
can be achieved with all four processors running simultaneously.

This article describes how matrix multiplication can be performed even faster, up to
twice the above rates. This can be achieved by (1) employing Strassen's matrix multi-
plication algorithm to reduce the number of oating-point operations performed and (2)
utilizing local memory on the Cray-2 to avoid performance losses due to memory bank
contention. The numerical stability and potential for parallel application of this procedure
are also discussed.

The author is with the Numerical Aerodynamic Simulation Systems Division at NASA
Ames Research Center, Mo�ett Field, CA 94035.

1

Introduction

Recently a number of high-performance multi-processor vector computers have become
available for scienti�c computation. One of these is the Cray-2, manufactured by Cray
Research, Inc. It features over 268 million 64-bit words of main memory, which is between
one and two orders of magnitude more than that provided in previous generations of
supercomputers. In addition to this large main memory, the Cray-2 features four central
processing units (CPUs), each with a hardware clock period of only 4.1 nanoseconds, as
compared to 9.5 nanoseconds on the Cray X-MP line. Thus each Cray-2 CPU is potentially
about twice as fast as a Cray X-MP CPU. However, performance rates on typical vectorized
FORTRAN programs are only about on a par with the Cray X-MP, largely due to the fact
that chips commensurate in speed with the fast Cray-2 CPUs were not available when the
�rst few Cray-2 systems were manufactured.

For applications that can e�ectively utilize certain assembly-coded library routines,
however, the higher power of the Cray-2 can be harnessed. In particular, Cray's library
routine for matrix multiplication (MXM) is capable of speeds that are close to the peak
hardware speeds. For one processor running without memory interference from other pro-
cessors, a performance rate of 425 million oating-point operations per second (MFLOPS)
has been achieved on a matrix multiplication in a stand-alone environment. Even with the
other processors busy as in a normal operating environment, rates near 300 MFLOPS can
easily be achieved. Using a four processor, multi-tasked version of this routine, over 1700
MFLOPS has been achieved.

Can matrices be multiplied on the Cray-2 signi�cantly faster than this? Yes. In fact,
large matrices can be multiplied with more than twice the speed of the MXM routine.
Clearly such speedups cannot be obtained solely by more e�cient implementation of the
usual matrix multiplication scheme, although some improvement can be made in this area.
The key to such speedups is to employ an advanced algorithm that produces the ma-
trix product using fewer oating-point operations, while still maintaining a high level of
vectorization and functional unit concurrency.

Strassen's Matrix Multiplication Algorithm

The fact that matrix multiplication can be performed with fewer than 2n3 arithmetic
operations has been known since 1969, when V. Strassen published an algorithm that
asymtotically requires only about 4:7n2:807 operations [1]. Since then other such algorithms
have been discovered [2], and currently the best known result is due to Coppersmith and
Winograd [3], which reduces the exponent of n to only 2.496.

These more recently discovered algorithms are considerably more complicated than
Strassen's algorithm and do not signi�cantly improve upon Strassen's algorithm unless the
matrices are quite large (i.e., 1; 000 � 1; 000 or so). Thus this article will focus on the
implementation of Strassen's algorithm, which is as follows:

2

Let the matrices A, B, and C be divided into half-sized blocks:"
A11A12

A21A22

"
B11B12

B21B22

#
=

"
C11C12

C21C22

#

Then the result may be calculated as follows:

P1 = (A11 +A22)(B11 +B22)

P2 = (A21 +A22)B11

P3 = A11(B12 �B22)

P4 = A22(B21 �B11)

P5 = (A11 +A12)B22

P6 = (A21 �A11)(B11 +B12)

P7 = (A12 �A22)(B21 +B22)

C11 = P1 + P4 � P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 � P2 + P6

It should be pointed out that the intermediate matrices P1; P2; � � � ; P7 may all be computed
concurrently. The last four lines may also be computed concurrently, but their cost is gen-
erally insigni�cant compared to the previous seven lines. In any event Strassen's algorithm
appears to be fairly well suited for multi-processor computation.

The computational savings of employing Strassen's algorithm derives from the fact
that only seven half-sized matrix multiplications need to be performed, whereas eight are
required with the standard algorithm. Thus for fairly large matrices, where the cost of
performing this algorithm is dominated by the cost of multiplying the half-sized blocks, a
savings of approximately 14% can be realized (in theory) over the traditional method.

Strassen's method can of course be recursively employed to multiply the half-sized
blocks, and so on down to individual matrix elements if desired. For every level of recursion,
an additional 14% savings can be realized. However, in practice this recursion is only
performed down to the level at which the losses due to bookkeeping costs and short vector
lengths overwhelm any savings due to fewer oating-point operations being performed. On
the Cray-2 this crossover point was found to be for matrices of size 128 � 128.

Reducing Memory Bank Contention

The Cray-2 has 128 independent, interleaved main memory banks. Thus a vector fetch
of 64 contiguous data words obtains each word from a separate bank, provided each of the
requested banks is not busy. However, with four CPUs actively accessing main memory,
the probability that a requested bank will be busy is fairly high. As a result, the overall
performance of the Cray-2 on memory intensive programs such as matrix multiplication is

3

reduced as much as 35% below what it would be in the absence of contention. This loss
will be reduced in the future as faster memory chips become available.

One way to avoid this performance loss is to employ the 16,384 word local memory
in each CPU to perform block matrix multiplications. In this way main memory tra�c
is sharply reduced, and the CPU computational units can perform nearly at peak speed,
even when the system is busy with jobs on the other CPUs. Don Calahan of the University
of Michigan has prepared an assembly-coded matrix multiplication routine based on this
principle, and this routine was employed in these calculations.

Performance Results

For testing purposes, Strassen's algorithm was coded in FORTRAN for square matrices,
although it should not be di�cult to generalize the implementation for non-square matri-
ces since the Strassen formulas still hold for this case. Calahan's local memory routine
was referenced for matrices smaller than 128 � 128. Recursion was obtained merely by
replicating the FORTRAN subroutine and changing the name at each level of recursion.
Although little real work was performed in the FORTRAN subroutines, these operations
were vectorized by the FORTRAN compiler. No attempt was made to utilize more than
one of the four Cray-2 CPUs. However, if this were done, speedups of nearly four times
should be possible because inter-processor memory bank contention is minimized by the
use of Calahan's routine.

The usual implementation of Strassen's routine requires additional memory. In this
program, a scratch array of size 3n2 was required in addition to the input and result
arrays. On a large memory computer such as the Cray-2, memory space is not a serious
issue, and in fact trading memory space for increased performance is an e�ective use of the
Cray-2. On systems where memory is more dear, a version proposed by Kreczmar [4] may
be preferable. That version reduces the extra storage requirements to 2n2=3.

Table 1 compares the performance of this implementation with that of the Cray library
matrix multiplication routine. Columns headed \Strassen Routine" contain data for the
technique described above, while \Cray Library MXM" contain data for the Cray library
matrix multiplication routine. These results are based on ten trials with pseudorandom
normally distributed data. The error statistic reported is the relative root-mean-square
error. To be precise, the error statistic E is given by

E = n�3=2
X
i;j

(Aij � Sij)
2

where A is the computed matrix product and S is exact matrix product. The exact
matrix S was computed using double-precision calculations, which are feasible only up
to 1; 024 � 1; 024. Cray computers do not have hardware for performing arithmetic on
double precision (128 bit) data, and as a result double precision operations are two orders
of magnitude slower than single precision arithmetic.

It can be seen from the results in the table that the new routine is approximately
35% faster than MXM for small matrices. This speedup is entirely due to Calahan's local

4

Matrix Strassen Routine Cray Library MXM Time
Size CPU Time Error CPU Time Error Ratio
64 0.0014 9.686 �10�15 0.0019 9.686 �10�15 1.35
100 0.0057 9.187 �10�15 0.0078 1.214 �10�14 1.35
128 0.0112 1.003 �10�14 0.0162 1.355 �10�14 1.45
200 0.0474 1.891 �10�14 0.0636 1.704 �10�14 1.34
256 0.0881 1.999 �10�14 0.1401 1.915 �10�14 1.59
400 0.3548 3.745 �10�14 0.4844 2.420 �10�14 1.37
512 0.6452 3.997 �10�14 1.0473 2.730 �10�14 1.62
800 2.5878 7.484 �10�14 3.7262 3.424 �10�14 1.44
1024 4.7107 7.993 �10�14 8.7800 3.882 �10�14 1.86
1600 18.3251 28.3005 1.54
2048 33.1119 66.6682 2.01

Table 1: Comparative Matrix Multiplication Performance

memory matrix multiplication routine. Beginning at size 128 � 128, a larger speedup is
obtained, indicating the positive e�ect of the Strassen algorithm. Some irregularity can be
seen in the speedup �gures from entry to entry, but these �gures are monotonic if restricted
to powers of two or to non-powers of two. For a 2; 048�2; 048 matrix multiplication, which
was the largest case studied, a speedup factor of 2.01 was obtained. Again, all but 35% of
this speedup is due to usage of the Strassen algorithm.

Numerical Stability of Strassen's Algorithm

It can be seen from the �gures in the table that the numerical errors in Strassen's
algorithm, although slightly larger than the ordinary inner product method, appear to be
well under control in the cases studied. In general Strassen's algorithm is known to be
not as numerically stable as the inner product calculation, although it still satis�es an
acceptable stability condition.

In 1975 Webb Miller [5] showed that any scheme satisfying a su�ciently strong notion
of stability would have to perform at least n3 multiplications to evaluate a n � n matrix
product. Thus the ordinary inner product method is optimal for this stability condition.
However, Strassen's algorithm is known [5] to satisfy a condition known as simultaneous
Brent stability. For our purposes these two stability conditions can be de�ned as follows.
Let cik =

P
j aijbjk denote the usual inner product of two matrices A and B. Let �cik

denote the numerical error in calculating cik by some particular procedure (this term is more
precisely de�ned in Miller's paper). Then simultaneous Brent stability and simultaneous
strong stability are de�ned as, respectively,

�cik � C(max
j

jaijj)(max
j

jbjkj) for every i; k

5

�cik � C
X
j

jaijbjkj for every i; k

An example where Strassen's method is not strongly stable is as follows. Let � denote
a value on the order of the machine \epsilon" (i.e., 2�b, where b is the number of mantissa
bits in the representation of oating-point numbers). Consider the 2� 2 matrix product"

�2 1
1 �

"
1 �
�2 1

#
=

"
2�2 1 + �2

1 + �3 2�

#

Note that c11 is of order �2. In performing Strassen's algorithm to evaluate this product,
c11 is computed as

c11 = 2�(1 + �)� �(1� �2)� (1 + �2) + (1 � �)(1 + �2)

Because this calculation adds and subtracts numbers of order unity, the numerical error
in calculating c11 is potentially of order �. However, both terms of the sum in the strong
stability condition for c11 above are of order �2. Thus the strong stability condition can
fail by an unbounded factor | the greater the level of machine precision, the greater the
potential error factor.

In other words, these results imply that matrix products computed using the Strassen
algorithm can only be relied on to a level of accuracy that is on the order of the machine
epsilon times the largest value of the matrix. For most applications, this degree of accuracy
is completely acceptable | nothing more is required of a linear equation solution, for
example. Certainly away from a set of matrices of small measure there is no problem
whatsoever, other than a somewhat faster accumulation of error due to the increased
number of additions and subtractions that are part of Strassen's algorithm.

Conclusion

Strassen's algorithm appears to be a practical means of accelerating matrix multipli-
cation. It produces a signi�cant speedup of this operation whenever the matrices are
su�ciently large to overcome the e�ects of bookkeeping costs and the shorter vector length
of block matrix operations at the base level. These requirements should be met for matri-
ces of reasonable size on a variety of currently available scienti�c computer systems. Thus
this algorithm should be considered by anyone wishing to implement a high-performance
matrix multiply routine for scienti�c computation.

6

REFERENCES

1. Strassen, V., \Gaussian Elimination Is Not Optimal", Numerical Mathematics, Vol.
13 (1969), p. 354-356.

2. Pan, V., \New Fast Algorithms for Matrix Operations", SIAM Journal on Comput-

ing, Vol. 9 (1980), p. 321-342.

3. Coppersmith, D., and Winograd, S., \On the Asymptotic Complexity of Matrix
Multiplication", SIAM Journal on Computing, Vol. 11 (1982), p. 472-492.

4. Kreczmar, A., \On Memory Requirements of Strassen Algorithms", in Algorithms

and Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic
Press, New York, 1976.

5. Miller, Webb, \Computational Complexity and Numerical Stability", SIAM Journal

on Computing, Vol. 4 (1975), p. 97-107.

6. Kronsjo, Lydia, Computational Complexity of Sequential and Parallel Algorithms,
John Wiley, 1985.

7

